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Verification and Validation of Optimization of Replacement Portal Monitoring Replay 
Tools 

 
The Los Alamos National Laboratory and the Johns Hopkins Applied Physics Laboratory 
(APL) are both developing optimization software to fulfill the objective of Phase III of the 
Replacement Portal Monitoring (RPM) Program for the Department of Homeland Security.  
The objective of the Phase III of the RPM Program is to conduct an evaluation of three RPM 
systems designed to enhance mission effectiveness, gain operational efficiencies, and to 
address emerging mission needs against the Countering Weapons of Mass Destruction 
(CWMD) nuclear threat basis and special nuclear material (SNM) used in performance 
testing.  As such this task involves the use of global optimization algorithms.   
 
Global optimization (GO) methods can roughly be classified as deterministic and stochastic 
strategies.  Stochastic methods for global optimization ultimately rely on probabilistic 
approaches.  Given that random elements are involved, these methods only have weak 
theoretical guarantees of convergence to the global solution.  However, these methods 
generally can locate the vicinity of the global solution with relative ease. 
  
Deterministic methods are those that can provide a level of assurance that the global optimum 
will be located. However, it should be noted that, although deterministic methods can 
guarantee global optimality for certain GO problems, no algorithm can solve general GO 
problems with certainty in finite time.
1  
 
Because the complexity of the manifold of the solution space for the RPM Portal Replay 
Tools is unknown, general statements regarding the obtainment of the global minima cannot 
in general be obtained.  Accordingly, we employ multiple optimization strategies to examine 
the minima.  Furthermore, the ability to reduce the dimensionality of the data set by utilizing 
clustering techniques enables us the opportunity to explore the solution space more 
completely and consequently increases the likelihood of achieving the global minima.  
However, it must be cautioned that the clustering of the data increases the coarseness of the 
solution space and hence many more solutions may be possibly obtained with equivalent 
minima than one in which no clustering is performed.   
 
To ensure that the algorithms developed by the respective labs are able to determine the 
global minima several test problems are proposed.  The first test problem involves using all of 
the Characterization Test (CT) data for each of the respective vendor systems.  This data set 
includes items which are characterized as items to be detected as well as items are that are 
benign items i.e. items if detected would indicate a false alarm.  This test problem avoids the 
generation of synthetic data and other data processing steps.  The metric to be evaluated is the 
number of items detected versus undetected.  This evaluation will be at 4 levels of false alarm.  
The function to be minimized in the evaluation will have the functional form2: 

𝐹𝐹�𝑃𝑃𝑑𝑑,𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,� =(1 – m)(1 – Pd) + m ABS ((Pfa – Pfatarget ) / Pfatarget ) (1) 
  
Where: 

m(Pfa, Pfatarget) = 1 – exp( - (Pfa - Pfatarget)^2 / (2*sigma^2) ) 



 
σ~0.1*Pfatarget. 

 
Another test problem to evaluate the global minimization algorithms will involve the use of a 
synthetic data set generated by APL.  Details of this data set will be provided by APL.  
Briefly, APL will supply LANL with the spectra for which the minimization of the cost 
function will be evaluated.  Again, four different settings for the probability of false alarm 
will be evaluated.  
 
An addition test problem using the clustered set of the Stream of Commerce (SoC) data in 
conjunction with the APL synthetic SNM spectra will also be examined.  The clustered set of 
SoC will be developed by LANL and provided to APL for this evaluation. APL will provide 
the set of source synthetic spectra.  The cost function will again be evaluated at four 
prescribed false-alarm probabilities. 
 
Finally, we address the issue of comparing the solution sets i.e. the parameter settings of the 
vendors Replay Tools obtained during the minimization of the cost function in the multi-
objective optimization problem.  
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥),𝑓𝑓𝑀𝑀(𝑥𝑥))    Equation 1 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑥𝑥𝑥𝑥 𝑆𝑆 

 
It is envisioned that many solutions with the same global minima i.e. cost function will be 
obtained based upon preliminary evaluations by LANL of the solution space of the CT data.  
However, it remains to be determined if the different optimization strategies will uncover 
solution sets with the same parameter settings.  In this vein a question that may be raised is 
that of the preferred solution.  Simply stated, these solutions are non-dominated by one 
another.  That is, there exist no other solution in the entire search space that dominate any of 
these solutions.  Thus, if the parameters are perfectly implemented into the black-box 
algorithms each of the solutions is the optimal solution.  On the other hand if the parameters 
cannot be perfectly implemented then the resulting global optima solution may be effected.   
Consequently, if a global solution is quite sensitive to such variable perturbations in its 
vicinity, the implemented solution may result in a different set of objective values than that of 
the theoretical optimal solution.  Thus, we seek solutions that are referred to as robust and that 
do not exhibit or minimize this property.  Much work has been performed in finding such 
robust solutions.3, 4,5 Essentially instead of optimizing the original function we optimize the 
mean effective function computed by averaging a representative set of neighboring solutions.  
Solutions which are less sensitive to such local perturbations will perform well in terms of the 
mean effective objective values and the resulting efficient front may turn out to be the robust 
frontier.   
 
Mathematically we define a robust solution for a single objective function as: 
 
 



𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) =
1

[𝛽𝛽𝛿𝛿(𝑥𝑥)]� 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑑𝑑   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2
𝑦𝑦𝑦𝑦𝛽𝛽𝛿𝛿(𝑥𝑥)

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑥𝑥 𝜖𝜖 𝑆𝑆 
where: 
 
𝛽𝛽𝛿𝛿  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝛿𝛿 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 [𝛽𝛽𝛿𝛿(𝑥𝑥)] 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑜𝑜𝑜𝑜𝑜𝑜 
 
Implementation of  Equation  2 requires a finite set of solutions  H may be either be randomly 
or structurally sampled, i.e. Latin hypercube method, chosen around a δ neighboordhod B 
δ(x) of a solution x in the variable space and the mean function value  (feff).  Since this cause 
H times as many evaluations the use of a Linux based operating system which will allow for 
on the order of 10-100 greater processing power is recommended.  Additionally, the use of a 
dynamically updated archive of a fixed size for choosing neighboring solutions is 
recommended and offers faster computation.6  As suggested by Deb, the approach utilized is 
to calculate the normalized difference in values between the perturbed function value fp (can 
be feff) and the original function f itself and declare a solution to be robust, if the normalized 
difference is smaller than a chosen threshold (η).7 
 
Extension of the concept of the single robust optimization to multi-objective functions is 
performed by examining each Pareto-optimal solution to its insensitivity towards small 
perturbations in its decision variable values.  The extension of the single objective robust 
solution is performed by recognizing: 
 

1. The sensitivity is established with respect to all M objectives.  That is, a combined 
effect of variations in all M objectives has to be used as a measure of sensitivity to 
variable perturbation. 

2. There are many solutions to be check for robustness to multi-objective optimization as 
opposed to one or two for single-objective optimization. 

 
𝑀𝑀𝑀𝑀𝑀𝑀 (𝑓𝑓1

𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥),𝑓𝑓1
𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥),𝑓𝑓1

𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥),𝑓𝑓1
𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥),𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 3 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑥𝑥 𝜖𝜖 𝑆𝑆, 
Where: 

 𝑓𝑓𝑗𝑗
𝑒𝑒𝑒𝑒𝑒𝑒(x) is defined as follows: 

 

𝑓𝑓𝑗𝑗
𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) =

1
[𝛽𝛽𝛿𝛿(𝑥𝑥)]� 𝑓𝑓𝑗𝑗(𝑦𝑦)𝑑𝑑𝑑𝑑

𝑦𝑦𝑦𝑦𝛽𝛽𝛿𝛿
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑥𝑥 𝜖𝜖 𝑆𝑆 
 
Due to the variable sensitivities, a part of the original global Pareto-optimal (efficient) front 
may not qualify as a robust front. In some scenarios, the original global efficient front 
(corresponding to the problem stated in Equation 3) may be completely non-robust and an 
original local efficient or an original sub-optimal front may now become robust. Depending 
on how robust the original global efficient front is with respect to the above definition, there 
can be the following four main scenarios8: 



 
• Case 1: The complete original efficient front is robust. 
• Case 2: A part of the original efficient front is no more robust. 
• Case 3: The complete original global efficient front is non-robust; instead an original local 
efficient front is robust. 
• Case 4: A part of the original global efficient front is robust together with a part of an 
original local efficient front. 
 
We illustrate and discuss each of the above four scenarios in the following. Later, we develop 
one test problem for each scenario. 
 
Case 1 
This is the simplest case in which the original efficient front remains as an efficient front with 
respect to the mean effective objective functions. Figure 3 illustrates such a problem for a 
two-objective optimization problem. Although it is expected that the global efficient front 
constructed with the mean effective objectives will be somewhat worse than that constructed 
with the original objectives, the entire set of original Pareto- optimal solutions is robust and is 
the target in this type of optimization problems. The concept can also be extended for more 
than two objectives. 

 
 

 

Figure 3: Case 1: Complete efficient front is 
robust. 
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Case 2 
 
Here, the entire original efficient front is not robust with respect to the above definition for 
robustness of type I. In most real-world scenarios such a problem is expected, as some portion of 
the original efficient front may lie in a sensitive region in the decision variable space. 
 
In such a problem, an important task of a robust optimizer would be to identify only that part of 
the efficient front which is robust (that is, less sensitive to the variable perturbation). Figure 4 
shows that the efficient front corresponding to the mean effective objectives does not span over 
the entire original efficient region in a two-objective optimization problem. 
 
Case 3 
Cases 3 and 4 correspond to more difficult problems in which the original problem may have more 
than one efficient frontiers (global and local). In a Case 3 problem, the global efficient front of the 
original problem is completely dominated by a local efficient front with respect to the mean 
effective objectives, thereby meaning that the original global Pareto-optimal solutions are not 
robust solutions and that they are sensitive to local perturbation. Figure 5 demonstrates such a 
problem with two objectives. This type of problem, if encountered, must be solved for finding 
the robust efficient front, instead of the sensitive global efficient front. 
 

 

 
Figure 5: Case 3: The complete global 
efficient front is not robust. 

Figure 6: Case 4: A part of 
the global efficient front 
is not robust. 
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Case 4 
 
Instead of the complete original global efficient front being sensitive to the variable perturbation, 
Case 4 problems cause a part of it to be adequately insensitive. In the remaining part, a new front 
appears to be robust. Figure 6 illustrates this problem with two objectives. A part of the robust 
frontier corresponds to the original global efficient frontier and the rest corresponds to the 
original local efficient frontier. 
 
Certainly, other scenarios are possible, where instead of an original local efficient front becoming 
robust, a completely new frontier emerges to be robust. This is likely in the case of constrained 
optimization with Pareto-optimal solutions lying on the constraint boundary. The concepts can 
also be extended to problems having more than two objectives. 
 
While the previous description involves the examination of the minima to perturbations in the 
Replay tool parameters it is not envisioned that they cannot be implemented exactly.  Therefore, 
the applicability of the robust optimization solution to the RPM Optimization is not clear.  
However, the problem that is apparent in determining the global minima is that of the evolving 
data set.  That is, although the Replay Tool parameters are determined from one sample of data 
within the entirety of possible data the data presented at any given period may differ from the 
data set utilized to determine the original parameters.  To address this issue we propose to 
segment the data from each of the respective sites into X separate batches and compare the 
parameter settings for each respective batch.  We can also investigate the sensitivity of the 
parameters to different segments of the clustered SoC data.  A general formalism to address this 
problem can be developed but is outside of the scope of this Phase of the project. 
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